

What is Trusted Computing?

- Trusted Computing is defined as the use of a computer when there is confidence that the computer will behave as expected
- In practice, trusted computing is dedicated hardware that:
 - > Protects a unique platform identity (TPM)
 - Verifies software integrity before software is loaded (TPM)
 - > Protects network integrity (TNC)
 - > Protects data integrity and confidentiality (SED)
- Information assets are protected by trusted computing technology by the ability to detect tampering with software before affected software is loaded.

A hardware "Root-of-Trust" is provided by a secure hardware chip, typically a Trusted Platform Module (TPM).

Protecting Credentials

www.shutterstock.com · 66632260

Device Identity

Device Health

Secure Execution

Data Protection

www.shutterstock.com 81825655

Crypto Erase

Case Studies

Case Study #1 – Professional Services Firm

Who

PricewaterhouseCoopers

Problem

- Protect company networks and information resources from unauthorized access through the use of stolen certificates
- Software tools designed to prevent export of certificate private keys can be subverted by Jailbreak, a free web download
- Jailbreaking certificates violates company and regulatory policy and is often a beach of contract

Additional Requirements

- Scalable to 150,000 employees at 850 locations in 142 countries
- No additional hardware
- Work across broad spectrum of applications
- Compatible with existing PKI infrastructure
- Centrally manageable
- > Low cost

Case Study #1 – Professional Services Firm (cont')

Solution

- > TPMs in nearly 100% of computing platforms
- > Wave Systems management software suite to provide scalable:
 - TPM provisioning
 - Application keying material management

Benefits

- No additional hardware required
- Compatible with existing PKI infrastructure
- Cost Effectiveness (three year projection, including licenses, deployment costs, and operational costs):
 - TPM solution is half the cost of smart card
 - TPM solution is one-third the cost of USB tokens

Case Study #2 – Automotive Manufacturer

Who

- Mazda North American Operations (MNAO)
 - Responsible for R & D, sales and marketing, parts and customer service in North America

Problem

 Protect customer personal identifiable information and confidential business information on Laptops

Additional requirements

- > IT burden had to be low to none
- Data protection is the highest priority
- > Protection against lost or stolen laptops

Case Study #2 – Automotive Manufacturer (cont')

Solution

- Self Encrypting Drives (SEDs) and Wave Systems SED management application
 - Centralized administration of users, credentials and access privileges
 - Policy based controls
 - Proof of Compliance
 - Simplified machine re-provisioning, data destruction and EOL best practices
 - SSO, Windows® Password Synchronization
 - Password recovery "Help Desk" capabilities

Benefits

- > Protects mobile data
- "Built in" encryption minimizes setup and support costs
- > Centralized management of computer security policies
- > Proof of compliance for data protection regulations

Case Study #3 – Safe & Lock Company

Who

- > Diebold
 - Automated Teller Machine (ATM) pioneer
 - 170,000 employees in 90 countries
 - Delivering self-service solutions and security systems for over 150 years

Problem

- > ATM security is an ongoing concern
 - Aggressive, sophisticated criminals
 - \$50B in ATM cash withdrawn annually
- > Physical brute force attacks
 - Prevented by locks, cameras, safes
- Cyber attacks
 - Thieves hack into ATM
 - Bypass onboard computer
 - Use unauthorized computer to issue commands
 - Result: fraudulent withdrawals

Case Study #3 – Safe & Lock Company (cont')

Solution

- > ATM on-board computer contains a TPM
- > Wave management software integrated into ATM security framework
- Use TPM to generate hardware-based machine certificates within PKI infrastructure
- Unique, un-spoofable identifier for device authentication
- Also supports user certificates for service technicians

Benefits

- Hardware-level security provides stronger protection than software-only solution
- > Standards-based security:
 - Ensures critical management functions
 - Provides assurance that applications run flawlessly with all TPM vendors – insulation from change

Case Study #4 – Host Integrity at Startup (HIS)

Goals:

- NSA Research initiative
- Measure and report integrity of platform from boot-up to log-in
- Detect occurrences of malware and unintended changes

Requirements

- Small pilot of 260 platforms
- Measure BIOS and pre-OS environment
- Report measurements to server for action
- Support Windows XP on Dell Optiplex 755 and higher

Implementation

- TPM Roots of Trust for Storage, Measurement and Reporting were used
- Integrated with existing infrastructure Privacy CA worked with existing PKI infrastructure
- Non-invasive No additional hardware necessary
- Initial focus on reporting No additional action taken
- Inspired other pilots in Department of Defense

Conclusion

- Trusted computing is cyber defense technology that can be used to protect enterprise data, platforms and networks
- Trusted computing technologies are actively evolving, with new standards and new products regularly entering the market
- Major hardware manufacturers and software vendors support trusted computing off-the-shelf
- Trusted computing products can offer a cost-effective path to improved compliance and security